A slight improvement to Garaev's sum product estimate

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ar 2 00 7 A SLIGHT IMPROVEMENT TO GARAEV ’ S SUM PRODUCT ESTIMATE

Let A be a subset of F p , the field of p elements with p prime. We let A + A = {a + b : a ∈ A, b ∈ A}, and AA = {ab : a ∈ A, b ∈ A}. It is fun (and useful) to prove lower bounds on max(|A+A|, |AA|) (see e.g. [BKT],[BGK],[G]). Recently, Garaev [G] showed that when |A| < p 1 2 one has the estimate max(|A + A|, |AA|) |A| 15 14. By using Plunneke's inequality in a slightly more sophisticated way, ...

متن کامل

An explicit sum-product estimate in Fp

Let Fp be the field of residue classes modulo a prime number p and let A be a non-empty subset of Fp. In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of max{|A+A|, |AA|}. In particular, our result implies that if 1 < |A| ≤ p7/13(log p)−4/13, then max{|A + A|, |AA|} ≫ |A|15/14 (log |A|)2/7 . 2000 Mathemati...

متن کامل

A Slight Improvement to the Colored Bárány's Theorem

Suppose d+ 1 absolutely continuous probability measures m0, . . . ,md on Rd are given. In this paper, we prove that there exists a point of Rd that belongs to the convex hull of d+1 points v0, . . . , vd with probability at least 2d (d+1)!(d+1) , where each point vi is sampled independently according to probability measure mi.

متن کامل

The Sum-product Estimate for Large Subsets of Prime Fields

Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.

متن کامل

A Short Proof of a Near-Optimal Cardinality Estimate for the Product of a Sum Set

In this note it is established that, for any finite set A of real numbers, there exist two elements a, b ∈ A such that |(a+A)(b+A)| |A| 2 log |A| . In particular, it follows that |(A + A)(A + A)| |A| 2 log |A| . The latter inequality had in fact already been established in an earlier work of the author and Rudnev [8], which built upon the recent developments of Guth and Katz [2] in their work o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2008

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-08-09385-4